Snowmaking System Engineering

BASIC FORMULAS

1. Typical Material Cost Breakdown of a Snowmaking System

AIR COMPRESSORS	30%
PIPES \& FITTINGS	40%
HYDRANTS, REGULATORS \& VALVES	5%
SNOWMACHINES \& HOSES	5%
WATER PUMPS	15%
SYSTEM ENGINEERING	5%

2. Snowmaking Technology Energy Use Comparison

TECHNOLOGY USED	GPM OF WATER CONVERTED TO SNOW PER KW OF ENERGY	LPM OF WATER CONVERTED TO SNOW PER KW OF ENERGY
1. Air/Nater Gun on Tower	1.0	3.8
2. Medium Fan Gun on Tower	1.9	7.2
3. Sky Giant Low Energy Gun on Tower	3.3	12.5
*Comparison at 19F (-7.2C) wet bulb temperature.		

3. Typical Air Compressor Discharge Temperature

TYPE OF COMPRESSOR
DISCHARGE ABOVE INTAKE

Rotary - Screw	180 F
Centrifugal	200 F
Reciprocating Piston	350 F

4. Calculating Friction Loss of Water in Pipe-lines

		Where
$\mathrm{f}=0.2083\left(\frac{100}{\mathrm{c}}\right)$	1.85	$\begin{aligned} & f=\text { Friction head in feet of water per } 100 \\ & \text { feet of pipe } \end{aligned}$
	$\mathrm{q}_{4.8655}$	$d=$ Inside diameter of pipe in inches
	d	$\mathrm{q}=$ Flow in GPM
		$c=\text { Surface roughness constant (100 is }$

5. Calculating Air Pressure Loss Due to Friction

6. Calculating Horsepower For Water Pump
```
HP=
WHERE
SP-GR = Specific Gravity
```


7. Calculating Operating Cost

$\operatorname{COST} /$ HR. $=\frac{.000189 \times \text { GPM } \times \text { total head } \times \text { power rate }}{\text { Overall pump \& motor efficiency }}$

8. Water Snow Relationships

3.2 Gallons $=1 \mathrm{FT}^{3}$ of Snow

1 Gallon = 8.342 lbs
$1 \mathrm{FT}^{3}$ Water $=7.48$ Gallons
1 Acre $=43,560 \mathrm{FT}^{2}$
1 Acre Foot of Snow = 180,000 Gallons of Water

9. English to Metric Conversion Factors

English Units

Gallons (GAL.)
Gallons Per Minute (GPM)
Gallons Per Minute (GPM)
Acres
Acres
Feet
Cubic Feet (FT ${ }^{3}$)
Horsepower (HP)
Pounds Per Square Inch (PSI)
Gal/Min
Hectare-M

Multiply By	Metric Units
3.785	Litres (L)
3.785	Litres Per Minute (LPM)
0.0631	Litres Per Second (LPS)
0.40469	Hectares
4046.9	Meters ${ }^{2}$
0.3048	Meters
0.0283	Cubic Meters (M 3)
0.7457	Kilowatts
6.895	Kilopascals (KPA)
0.2271	$\mathrm{M}^{3} / \mathrm{HR}$
10,000	M^{3}

10. How to Determine Snow Quality

One could collect fresh snow samples and determine weight per Cubic Foot or Cubic Meter and state the quality in density like pounds per Cubic Foot or density per Cubic Meter.

A far simpler and practical method is to test the snow on the ground in the production plume while snow guns are operating by doing a Snow Ball Test. The quality can be determined on a scale from 1 to 6 according to the table below:

The Snowball Test

Snow Quality Description

1

2 Snow can only be packed into a loose ball that falls apart
3 Snow can be packed into a ball that can be broken apart
4 Snow can be packed into a dense ball that does not change color when squeezed
5 Snow can be packed into a dense ball that changes to a darker color when squeezed but little or no water comes out

6 Snow can be packed into a dense ball that discharges water when squeezed

